AtCoder Beginner Contest 362 Solution
A - Buy a Pen
给定红蓝绿三支笔的价格,并不买指定颜色的笔,问买一支笔最少需要多少钱。
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
int main(void) {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int r, g, b;
string c;
cin >> r >> g >> b >> c;
if (c[0] == 'R') {
r = 999;
} else if (c[0] == 'G') {
g = 999;
} else {
b = 999;
}
cout << min({r, g, b}) << '\n';
return 0;
}
B - Right Triangle
给定三点坐标,问是否形成直角三角形。
#include <bits/stdc++.h>
using namespace std;
int main(){
int xA, yA;
cin >> xA >> yA;
int xB, yB;
cin >> xB >> yB;
int xC, yC;
cin >> xC >> yC;
int a = (xB - xC) * (xB - xC) + (yB - yC) * (yB - yC);
int b = (xC - xA) * (xC - xA) + (yC - yA) * (yC - yA);
int c = (xA - xB) * (xA - xB) + (yA - yB) * (yA - yB);
if (max({a, b, c}) * 2 == a + b + c){
cout << "Yes" << endl;
} else {
cout << "No" << endl;
}
}
C - Sum = 0
找到一个满足条件的数组:
#include <bits/stdc++.h>
using namespace std;
int main(){
int N;
cin >> N;
vector<int> L(N), R(N);
for (int i = 0; i < N; i++){
cin >> L[i] >> R[i];
}
long long SL = 0, SR = 0;
for (int i = 0; i < N; i++){
SL += L[i];
SR += R[i];
}
if (SR < 0 || SL > 0){
cout << "No" << endl;
} else {
long long D = -SL;
for (int i = 0; i < N; i++){
long long a = min((long long) R[i] - L[i], D);
L[i] += a;
D -= a;
}
cout << "Yes" << endl;
for (int i = 0; i < N; i++){
cout << L[i];
if (i < N - 1){
cout << ' ';
}
}
cout << endl;
}
}
D - Shortest Path 3
求最短路
#include <bits/stdc++.h>
using namespace std;
int main(){
int N, M;
cin >> N >> M;
vector<int> A(N);
for (int i = 0; i < N; i++){
cin >> A[i];
}
vector<vector<pair<int, int>>> E(N);
for (int i = 0; i < M; i++){
int U, V, B;
cin >> U >> V >> B;
U--;
V--;
E[U].push_back(make_pair(B, V));
E[V].push_back(make_pair(B, U));
}
vector<long long> d(N, -1);
priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> pq;\
pq.push(make_pair(A[0], 0));
while (!pq.empty()){
long long c = pq.top().first;
int v = pq.top().second;
pq.pop();
if (d[v] == -1){
d[v] = c;
for (pair<int, int> e : E[v]){
int w = e.second;
if (d[w] == -1){
pq.push(make_pair(c + e.first + A[w], w));
}
}
}
}
for (int i = 1; i < N; i++){
cout << d[i];
if (i < N - 1){
cout << ' ';
}
}
cout << endl;
}
E - Count Arithmetic Subsequences
问数组中子序列为等差数列的数量
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
const int mo = 998244353;
int main(void) {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n;
cin >> n;
vector<int> a(n);
for (auto& x : a)
cin >> x;
vector<int> diff;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
diff.push_back(a[j] - a[i]);
}
}
sort(diff.begin(), diff.end());
diff.erase(unique(diff.begin(), diff.end()), diff.end());
vector<int> ans(n + 1, 0);
ans[1] = n;
if (n > 1)
ans[2] = n * (n - 1) / 2;
for (auto d : diff) {
vector<vector<int>> tr(n);
for (int i = 0; i < n; ++i)
for (int j = 0; j < i; ++j)
if (a[i] - a[j] == d)
tr[i].push_back(j);
vector<vector<int>> dp(n, vector<int>(n + 1, 0));
for (int i = 0; i < n; ++i) {
dp[i][1] = 1;
for (int j = 1; j <= i; ++j) {
for (auto& k : tr[i]) {
dp[i][j + 1] += dp[k][j];
if (dp[i][j + 1] >= mo) {
dp[i][j + 1] -= mo;
}
}
}
}
for (int i = 0; i < n; ++i) {
for (int j = 3; j <= n; ++j) {
ans[j] += dp[i][j];
if (ans[j] >= mo) {
ans[j] -= mo;
}
}
}
}
for (int i = 1; i <= n; ++i) {
cout << ans[i] << " \n"[i == n];
}
return 0;
}
F - Perfect Matching on a Tree
给定一棵树,俩俩配对,收益是两个点的最短路边数。
构造配对方案,使得收益最大。
#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
typedef long long ll;
const ll MAXN=2e5+5;
vector<ll>adj[MAXN];
ll n;
ll sz[MAXN],core,num;
void dfs(ll u,ll fa){
sz[u]=1;
ll val=-1e18;
for(auto v:adj[u]){
if(v==fa){
continue;
}
dfs(v,u);
val=max(val,sz[v]);
sz[u]+=sz[v];
}
val=max(val,n-sz[u]);
if(val<num){
num=val;
core=u;
}
}
ll a[MAXN],tot;
void ga(ll u,ll fa){
if(u!=core){
a[++tot]=u;
}
for(auto v:adj[u]){
if(v==fa){
continue;
}
ga(v,u);
}
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin>>n;
num=1e18;
for(int i=1;i<n;++i){
ll u,v;
cin>>u>>v;
adj[u].push_back(v);
adj[v].push_back(u);
}
dfs(1,0);
if(!(n&1)){
a[++tot]=core;
}
ga(core,0);
for(int i=1;i<=n/2;++i){
cout<<a[i]<<" "<<a[i+n/2]<<endl;
}
return 0;
}